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Distributions of epistasis in microbes fit predictions from
a fitness landscape model
Guillaume Martin1,2, Santiago F Elena3 & Thomas Lenormand1

How do the fitness effects of several mutations combine?
Despite its simplicity, this question is central to the
understanding of multilocus evolution. Epistasis (the inter-
action between alleles at different loci), especially epistasis
for fitness traits such as reproduction and survival, influences
evolutionary predictions1,2 ‘‘almost whenever multilocus
genetics matters’’3.Q2 Yet very few models4,5 have sought to
predict epistasis, and none has been empirically tested. Here
we show that the distribution of epistasis can be predicted
from the distribution of single mutation effects, based on a
simple fitness landscape model6. We show that this prediction
closely matches the empirical measures of epistasis that have
been obtained for Escherichia coli7 and the RNA virus
vesicular stomatitis virus8. Our results suggest that a simple
fitness landscape model may be sufficient to quantitatively
capture the complex nature of gene interactions. This model
may offer a simple and widely applicable alternative to
complex metabolic network models, in particular for
making evolutionary predictions.Q3

Recent technical improvements in genetics have allowed measurement
of epistatic interactions in a very precise way. Large amounts of
empirical evidence stemming from the study of development, meta-
bolic networks5 and quantitative traits analyses9 have accumulated to
show that epistasis is a widespread feature of genetic systems. How-
ever, despite many examples of epistatic interactions between parti-
cular pairs of loci, relatively little is known about the overall
distribution of epistasis among random sets of mutations scattered
across the genome. A few studies have sought to measure this
distribution directly in model systems such as Escherichia coli7, RNA
viruses8,10,11 and Saccharomyces cerevisiae12. These studies have shown
that the variance of epistatic interactions is large compared with their
mean, which is always relatively close to zero10.
Unfortunately, theoretical developments have not gone hand-in-

hand with those empirical advances, and in particular, no theory is yet
available to explain, predict or generalize those observations. Fitness
epistasis among mutations at enzymatic loci has been modeled with
metabolic control theory4 or flux balance analysis5. The former

assumes idealized metabolic pathways and specific metabolism-fitness
relationships, whereas the latter models a much more precise and
complete metabolic network based on genomic data from model
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Figure 1 Fitness landscape model of epistasis between mutations, based on

three main assumptions (i–iii). An example of the fitness landscape is given

with only two phenotypic traits determining fitness and two mutations i and

j (both beneficial here). Fitness W(z) decreases as a multivariate Gaussian

function of the distance to the optimum on both traits, with arbitrary inter-

actions between traits (assumption (i)). From an arbitrary initial phenotype

(zo), distinct mutations (at different loci) produce random perturbations of

phenotypic traits (dzi,dzj), which act additively on phenotype when combined
together (dzij) (assumption (ii)). Although mutation effects on z are additive,

epistasis measured on log relative fitness (eij) is naturally generated by the

nonlinear mapping from phenotype z to fitness W(z). With stabilizing

selection, the curvature of W(z) produces a diminishing return of fitness on

phenotype so that two mutations whose effects ‘add up’ for phenotype do

not ‘add up’ for fitness (here, the outcome is negative eij). The more precise

quantitative predictions regarding eij distributions depend on the type of

distribution chosen for the dzi (in our model, a multivariate Gaussian with

arbitrary mutational covariances (assumption (iii)).
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organisms. These approaches propose a clear and valuable mechanistic
basis for gene interaction, and flux balance analysis has even been
successfully tested13, although only for the extreme case of single-gene
knockouts. However, flux balance analysis requires extensive knowl-
edge of the metabolism of particular organisms in particular environ-
ments, so it cannot be applied to a wide range of biological systems.
Perhaps more importantly, the predicted patterns of epistasis remain
to be directly compared withQ4 empirical data.
Despite the relatively minor function that Fisher attributed to

epistasis in adaptation, his geometrical model of adaptation14 provides
a general, yet unexplored, framework to predict epistasis among
mutations. This model assumes stabilizing selection on ‘n’ phenotypic
traits. The effect of a mutation is modeled as a random displacement
in this ‘n-dimensional’ phenotypic space. Although it has been very
useful in rejuvenating the theory of adaptation15, Fisher’s model is
often merely viewed as a heuristic picture for mutational effects.
However, by avoiding a mechanistic description of the relationship
between particular mutations, phenotypes and fitness, it allows a
global description of mutational effects without exhaustive knowledge

of the underlying genetic details. This generality is what makes it
attractive16. In addition, many of the underlying assumptions in
Fisher’s original model are in fact quite realistic17 or can easily
be relaxed6,18.
Here we used an extended version of Fisher’s geometric model6 that

allows for arbitrary mutational and selective interactions between
traits determining fitness (Fig. 1). Any model of stabilizing
selection (selection for a given optimum) naturally generates epistasis
for fitness, even when mutations act additively on the underlying
phenotype, because the relationship between phenotype and fitness is
nonlinear, as in our model here (Fig. 1). The model is formulated in
terms of measurable quantities (focusing on mutant fitness W instead
of underlying phenotype z; Fig. 1), which makes it directly
comparable to observation. We chose a Gaussian fitness function
(relating phenotype to fitness) because it approximates any smooth
function in the vicinity of an optimum and it qualitatively predicts
observed patterns in empirical data, such as the gamma distri-
bution of mutational effects in benign environments6 and the effect
of environmental harshness on the mutational mean and variance
in fitness19. Finally, the model can be easily generalized to
describe epistasis among more than two mutations (Supplementary
Methods online).
From this model, we derived three testable predictions (for details

and interpretation, see Methods). Log(wi) denotes the log-fitness of a
mutant bearing mutation i relative to that of the nonmutated initial
genotype (equation (1)). Epistasis among the pair of mutations i and j
(eij) is defined (equation (2)) as the difference between the log-fitness
of the double mutant and that expected if mutations acted multi-
plicatively: eij ¼ log(wij) – log(wi wj). The model first predicts that the
probability density function of eij is well approximated by a Gaussian
with mean zero and variance 2vs*, where vs* ¼ Var(log(wi)) is the
variance of single mutation effects measured in an environment to
which the initial genotype is well adapted (equation (3)). The second
prediction of the model is that epistasis among pairs of beneficial
mutations should be both biased and skewed toward negative values.
Third, the model predicts that when the initial genotype is at or near
the optimum, the distribution of log-fitness among mutant lines
with k mutations (all deleterious) can be approximated by a gamma
distribution G(b, a) with a constant shape (b) and a scale (a)
proportional to k.
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Figure 2 Observed and predicted distributions of fitness epistasis between

random pairs of mutations. (a,b) The observed distribution of epistasis for

log-fitness is presented for two model species (a, E. coli data set 1 (ref. 7)

and b, VSV data set8), along with the predicted Gaussian distribution

N(0, 2vs*), where vs* is the variance of single fitness effects (at the

optimum, so ¼ 0) estimated directly (E. coli) or inferred (VSV, using

the correction for so a 0; Methods). The dashed line gives the kernel

density estimate of the data (a smoothed equivalent of a histogram)

with a Gaussian smoothing kernel. The model and data are in very good

agreement for both species.
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Table 1 Pairwise epistasis in VSV and E. coli: fit to predictions

Species (number of observations)

Input parameters

(number of observations)

Epistasis variance

ve obs (s.e.m.) ve pred (s.e.m.)

ve obs / ve pred

F test

Epistasis mean

me obs (s.e.m.) t test K-S test

E. coli (n ¼ 27) (all mutations)

(ref. 7)

vs* ¼ 0.033

(n ¼ 54)

ve obs ¼ 0.0652 (0.017)

ve pred ¼ 0.0670 (0.013)

F26,53¼ 97%

P ¼ 0.94

me obs ¼ –0.033 (0.05)

me pred ¼ 0

t26 ¼ –0.66, P ¼ 0.51

D ¼ 0.18

P ¼ 0.30

VSV (n ¼ 59) (all mutations)

(ref. 8)

vs* ¼ 0.0047

so ¼ 0.11a (n ¼ 118)

ve obs ¼ 0.0089 (0.0016)

ve pred ¼ 0.0094 (0.0012)

F58,117 ¼ 95%

P ¼ 0.86

me obs ¼ 0.004 (0.012)

me pred ¼ 0

t58 ¼ 0.31, P ¼ 0.75

D ¼ 0.085

P ¼ 0.76

VSV (n ¼ 15) (beneficial

mutations) (ref. 8)

ne ¼ 3a

le ¼ 0.06a so ¼ 0.11a

(n ¼ 118)

ve obs ¼ 0.0043 (0.0016)

ve pred ¼ 0.0045 (.)

obs/pred ¼ 96%

w214 ¼ 13.4 P ¼0.99

me obs ¼ –0.075 (0.023)

me pred ¼ –0.059

t9 ¼ –0.95, P ¼ 0.36

D ¼ 0.27

P ¼ 0.22

In this test of the fit to predictions, observed variance (ve obs) and predicted variance (ve pred) were compared with two-tailed F tests, as the prediction (ve pred ¼ 2vs*) is itself based
on an independent estimate of vs*. For beneficial mutations in VSV (row three), the simulated prediction (see Methods) was considered exact (a conservative approach), so a two-
tailed w2 test was used. Observed means (me obs) and predicted means (me pred) were compared with two-tailed t tests. Distributions were not significantly different from a Gaussian
(Shapiro-Wilks test: P ¼ 0.45, E. coli; P ¼ 0.44, VSV (all mutations); P ¼ 0.59, VSV (beneficial mutations)). The predicted and observed overall distributions were also compared
with Kolmogorov-Smirnov (K-S) tests (one-sample test with N(0, 2vs*) or two-sample test with the simulated prediction for beneficial mutations in VSV). Column two gives the value
of the input parameters used in the prediction, estimated independently from the log-fitness distributions of the single mutants from which the double mutants were derived. None of
the observed distributions differ significantly from the predictions. The ratios of variances (in boldface) show that the prediction is always within 5% of the estimation. Power curves
for the t tests and F tests are given in Supplementary Figure 3.
aEstimates from the fit of the VSV data set (displaced gamma), with n ¼ ne ¼ 3 in simulations (Fig. 3) closest integer to the estimated ne ¼ 2.5.

Q15
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These three predictions have been tested with data from two widely
different species: E. coli7 and vesicular stomatitis virus8 (VSV; Fig. 2).
For each species, we tested three predictions (equation (3)): among all
pairs of mutations, E(eij) ¼ 0, Var(eij) ¼ 2vs*, and eij B N(0,2vs*).
None of these hypotheses was rejected. As already outlined in the
original studies, E(eij) did not significantly depart from 0 in either
E. coli or VSV. Furthermore, the observed Var(eij) values were very
close to the predicted values (o5% difference) when synthetic lethals
were discarded. Finally, overall, the distributions were not significantly
different from the predicted Gaussian N(0,2vs*) (Table 1 and Fig. 2).
The power curves for these tests (Supplementary Fig. 3 online)Q5 also
indicated that even if small departures from the null hypotheses could
not be detected, the ‘true’ differences between observations and
predictions were likely to be relatively small (except perhaps for the
E(eij) value observed for E. coli).
We tested the second prediction with the subset of beneficial

mutations analyzed in the VSV experiments. The model does not
provide an analytical expression for the distribution of eij
among beneficial mutations; therefore, we did this test by ‘confront-
ing’Q6 the observed epistasis with a simulated distribution using
parameters inferred from the distribution of single-mutant fitnesses
(Table 1). We found agreement betweenQ7 the empirical and predicted
distributions (Fig. 3; among the subset of beneficial mutations,
E(eij) o 0 is expected and observed). None of the predictions
regarding the mean, variance or distribution of eij was rejected, and
the power of these tests was reasonably good (Supplementary Fig. 3).
However, this comparison has obvious limitations, as it was based
on only 15 double mutants constructed from six distinct
beneficial mutations.
Testing the third prediction required fitting gamma distributions to

the log-fitness of mutant lines carrying a known number k of
mutations to check whether the change in shape (bk) and scale (ak)
with k conforms to the prediction. We used an extensive collection of
E. coli genotypes differing in the location and number of transposon
insertions7 (see Methods). These data set consisted of log-fitness
measures of genotypes carrying either k ¼ 1, 2, or 3 random
insertions, with 75 different combinations per k value. To estimate
the log-fitness distributions for each k value, we fitted independent
gamma distributions to the data by maximum likelihood (model 1 of
Table 2; see Methods), discarding four synthetic lethals. We
compared these estimates with alternative data fits in which a
and/or b were constrained according to k values, following alternative
predictions. We determined the Akaike information criterion (AIC)20

for several alternative models and estimated parameters for the best-
fitting models (Table 2).Q8 The model imposing our theoretical
expectation exactly (equation (A.5) of the Supplementary Methods:
bk ¼ b1 and ak ¼ ka1) was the most adequate (lowest AIC,
model 4). When directly estimated (model 1), the parameters

were indeed very close to the model prediction (Fig. 4 and
Supplementary Table 1 online). Thus, the form of epistasis and
its impact on log-fitness distributions seems accurately captured by
the model.
Overall, the distribution of epistasis for fitness predicted from a

simple fitness landscape model adequately accounted for empirical
distributions among both pairs and triplets of nonlethal mutations
(including between beneficial ones). To our knowledge, this is the first
empirical support for a general model of epistasis. The inherent
simplicity of this model allows testable predictions that are rarely
available at this degree of generality in other models connecting
genotype to phenotype to fitness, and it offers an alternative to the
more complex and specific metabolic network models that have been
developed5. The quantitative accuracy and generality of the predic-
tions, which are independent of the adaptation level, number of traits
or phenotypic correlations, could be useful in many evolutionary
predictions (such as the evolution of sex21,22). Finally, the fit between
this general model and data from two very different species indicates
that the observed empirical patterns may apply to other species as
well. In particular, among a set of random mutations, the average
epistasis is small (close to zero) with a large variance (twice that of
single effects at the optimum), whereas among only beneficial muta-
tions, average epistasis is negative. The generality of these patterns
remains an empirical issue, and, being fairly quantitative, they are
open to further testing, particularly in higher eukaryotes.
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Figure 3 Observed and predicted distributions of epistasis between VSV beneficial mutations8

(15 epistasis estimates). The predicted distribution (continuous line) is obtained by simulations

calibrated with the estimates of ne, so and le from single mutant log-fitness values (see Methods and

Table 1). We drew 1,500 mutant phenotypic effect vectors, dxi, into a standard multivariate Gaussian

of dimension n ¼ ne ¼ 3, which is the closest integer to ne ¼ 2.5 estimated from the VSV data. A

vector of the multivariate distance to the optimum, xo, was drawn into the same distribution and scaled

so that –1/2 le log(xoT . xo) ¼ so (with so ¼ 0.11 and le ¼ 0.06, from the data). The epistasis coefficient

between pairs of mutations (i,j) was computed as eij ¼ – le dxiT�dxj, and we kept only the subset of

simulated mutants with beneficial single effect (that is, dxi, such that log(wi) ¼ –le(xoT�dxi + 1/2dxi
T�dxi)

4 0); the resulting distribution is that of eij among all possible pairs of beneficial mutations for this

simulation. This was repeated 20 times to account for the effect of variation of the direction of xo for a

given so. The predicted distribution, obtained by the overall distribution of eij among the 20 replicated

simulations, is close to the empirical distribution (histogram).Q13
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Table 2 Effect of the number of mutations in E. coli: model

comparison

Model Constraints df Dev AIC

1a a1, a2, a3 | b1, b2, b3 8 0 16

2 a1, a2, a3 | b1 ¼b2 ¼ b3 6 0.08 12.08

3 a1 ¼ a2 ¼ a3 | b1, b2, b3 6 8.24 20.24

4b a2 ¼ 2a1, a3 ¼ 3a1 | b1 ¼ b2 ¼ b3 4 2.32 10.32

5 a1 ¼ a2 ¼ a3 | b1 ¼ b2 ¼ b3 4 21.8 29.8

Models Q16fitted for E. coli data set 2 (ref. 7). bk and ak refer to the shape and scale of
the gamma distributions fitted to the log-fitness distributions of distinct mutant sets
(carrying k ¼ 1, 2 or 3 mini-Tn10 insertions). Models are spelled out by the constraints
imposed among these parameters in the fitting process. Each model includes the
number of fitted parameters (df), the residual deviance (Dev) and the AIC. Model 1 is
unconstrained and provides the direct estimation of bk and ak; the distributions for
k ¼ 1, 2 or 3 are fitted independently. Its fit is not significantly better (w2 ¼ 2.32,
4 d.f., P ¼ 0.68) than that of model 4 (more constrained), which corresponds to our
prediction (constant shape b and increasing scale ak ¼ ka1; Supplementary Methods)
and is the most adequate model (lowest AIC). Similarly, model 2 (constraining shapes
to be identical) is not significantly better than model 4 (w2 ¼ 2.24, 2 d.f., P ¼ 0.33).
Model 3, corresponding to multiplicative fitness effects (eij ¼ 0; Supplementary

Methods), and model 5 (all distributions equal) are both rejected, showing that the
analysis has sufficient statistical power to reject inaccurate models.
aEstimate: shape b and scale a fitted independently for each mutant subsets. bOur prediction:
constant shape b and increasing scale ak ¼ ka1.
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METHODS
Model. Following Lande23, the fitness W(z) of a phenotype z (of dimension n,

the number of phenotypic traits under selection) is given by a multivariate

Gaussian function W(z) � exp(�1/2 zT�S�z) where T represents transposition,

and S is an arbitrary n � n symmetric positive semi-definite matrix that

describes all the selective interactions between phenotypic traits. Therefore, the

fitness function may be flat on some directions of the landscape (if S has some

null eigenvalues). The phenotype vector of the initial nonmutated genotype is

zo, and its level of adaptation is measured by so � –logW(zo)¼ 1/2 zo
T�S�zo. The

phenotypic effect of a mutation i is given by the vector dzi, so the mutant

phenotype is zo + dzi, and its log-relative fitness is as follows6:

logðwiÞ ¼ logðWðdzi+zoÞ=WðzoÞÞ ¼ �zTo � S � dzi � 1=2dz
T
i � S � dzi ð1Þ

Here, dzi refers to genotypic values (averaged over replicates of a given line),

not to individual replicate phenotypes (which are also influenced by micro-

environmental effects). It can be shown24 (Supplementary Note online) that if

fitness W(z) is a Gaussian function of individual phenotypes, then log-relative

fitness is necessarily a quadratic function of genotypic values, as used here, so

environmental effects on phenotype can be ignored. This model has received

indirect support from empirical distributions of single-mutation effects6,19. The

effects of mutations on phenotype were assumed to be additive, so that the

joint effect of mutations i and j is dzij ¼ dzi + dzj. Notably, the model is robust

to this fairly strong assumption (Supplementary Fig. 2). From equation (1), if

wij ¼ W(zo + dzij) / W(zo) is the relative fitness of the double mutant,

then pairwise epistasis, defined as eij ¼ log(wij) – log(wi wj), is given by

the following:

eij ¼ �dzTi � S � dzj ð2Þ

From equation (2), it seems that fitness epistasis between two given mutations

does not depend on zo, the position of the wild-type in phenotypic space (that

is, of its degree of adaptation to the environment). This stems from the fact that

we assumed a Gaussian fitness function. Indeed, epistasis eij depends on the

curvature of the log-fitness function (logW(z); Fig. 1), and this curvature is the

same for all z values with a quadratic log-fitness (or Gaussian fitness).

To predict the distribution of eij from equation (2), assumptions must be

made about the distribution of mutation effects on phenotype (dz). We assume

that dz is drawn into a multivariate Gaussian distribution with mean 0 and

arbitrary covariance matrix M. Then, eij is a bilinear form in Gaussian vectors25

whose moments can be related to those of the distribution of single effects,

log(wi) in equation (1). At the optimum (so ¼ 0 and zo ¼ 0 in equation (1)),

the variance vs* of log(wi) is6 vs* ¼ Var(–1/2 dzi
T�S�dzi) ¼ 1/2 Tr((S�M)2),

where ‘Tr(�)’ is matrix trace. Now, from equation (2) and because dzi and dzj
are independent (Cov(dzi,dzj) ¼ 0), we find for eij a mean me � E(eij) ¼
E(–dzi

T�S�dzj) ¼ 0, and because the phenotypic effects dzi are multivariate

Gaussian, the variance of epistasis is given by the following:

ve � VarðeijÞ ¼ Varð�dzTi � S � dzjÞ ¼ TrððS �MÞ2Þ ¼ 2v*s ð3Þ

For the same reasons, the distribution of eij has also no ‘skewness’, so the

Gaussian N(0, 2vs*) provides a simple and accurate approximation to the

distribution of eij (Supplementary Fig. 1), depending on a single parameter

(vs*). When the initial genotype is not at the optimum (so 4 0), the variance of

log(wi) is not equal to vs* but must be corrected6 with a measure of so, as vs*

44 Var(log(wi)) / (1 + 2so / �s), where �s¼ E(log(wi)) is the mean effect of

single mutations on log relative fitness. This correction was used for the VSV

data set.

The prediction ve ¼ 2 vs* in equation (3) is fairly general. In particular, as

equation (2) does not depend on zo, this relation is valid for any distance to the

optimum so. Similarly, as equation (3) is valid for any M and S, it does not

depend on the details of the phenotypic landscape: the number of traits n

(dimension of M and S) or their mutational and selective correlations

(elements of M and S). Although these parameters do influence distributions

of single-mutation fitness effects6, they do not alter the relationship between

single and multiple mutant fitness values.

Similarly, the distribution of eij among only beneficial mutations can be

obtained for a given fitness landscape (although only by numerical simula-

tions). This landscape is well characterized6 by the ‘effective trait effect’ le
(which depends on the distribution of the eigenvalues of S�M) and the ‘effective

number of dimensions’ ne. The distribution of eij (equation (2)) in the original

landscape (S, M) is well approximated by its corresponding distribution in the

equivalent landscape, for which S ¼ leIne and M ¼ Ine, where Ine is the identity

matrix of dimension ne. As for single-mutation effects6, the approximation fits

the two first moments of the whole distribution of eij among all mutations, but

it is also accurate for the subset of beneficial ones (as shown by simulations in

Supplementary Fig. 1). As both le and ne can be estimated from a data set of

single mutation effects6, eij among beneficial mutations can be numerically

simulated for the same data set, as we did for the VSV data set (Fig. 3).

Epistasis among beneficial mutations tends to be negatively biased in this

fitness landscape. This fact stems from the nonlinear relationship between

phenotype and fitness. In the phenotypic landscape described in Figure 1, two

beneficial mutations necessarily point to very similar directions (toward the

optimum). However, because the fitness function is concave, there is a

diminishing return ofWon z, along this direction. Therefore, two steps toward

the optimum result in a lower fitness than would be expected from the addition

of the fitness effects of each mutation, which corresponds to negative epistasis.

More precisely, we consider the expression of eij as given in equation (2) but in

the equivalent landscape (where S ¼ leIne). If dxi and dxj are the vectors of

effects of mutations i and j in the equivalent landscape, then from equation (2),

eij can be written as follows: eij ¼ – le dxiTdxj. Therefore, the sign of eij is the

sign of minus the cosine Q9of the angle between dxi and dxj. Because two

beneficial mutations tend to point to a similar direction (the optimum), their

angle is small, so their cosine is positive. For this reason, eij between beneficial

mutations tends to be negatively biased. Furthermore, this bias increases when

the distance to the optimum decreases (simulations not shown). This is simply

because the possible directions of dz resulting in beneficial mutations are more

constrained when closer to the optimum, which results in a smaller angle

between these mutations and therefore more negative epistasis.

The model can also easily be extended to lines carrying more than two

mutations (Supplementary Methods). When so 44 0, the distribution of log-

fitness values among lines carrying k mutations has mean E(log(w|k)) ¼ –k�s

and variance Var(log(w|k)) ¼ k2vs*, where �s and vs* are the mean and variance

of log-fitness values among single mutants (k ¼ 1), when so ¼ 0. Using the

same approach reported before6, the log-fitness distributions were approxi-

mated by a negative gamma matching the two first moments of the exact

distribution given above. If we call ak and bk the scale and shape parameters of

the gamma approximation for log(w|k), we then obtain ak ¼ ka1 and bk ¼ b1.
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Figure 4 Observed and predicted change of the distribution of log-fitness

with the number of mini-Tn10 insertions in E. coli: gamma approximation.
Parameters of a gamma distribution (its rate 1/s (a) and shape b (b))

estimated by maximum likelihood on E. coli data set 2 (ref. 7) for each

subset of mutants (single, double and triple). The estimated values were

obtained by independent fitting of gamma distributions on each subset

(model 1, Table 2). The predicted values were obtained by constraining of

the parameters of the gamma across subsets to follow our prediction (model

4, Table 2), with a proportional to the number of mutations per line in each

subset (one, two or three) and constant b across subsets. Bars give the

support limits for the estimates (Supplementary Table 1). The unconstrained

fit is not significantly better than the fit imposed byQ14 our prediction (model 4

versus model 1, w2 ¼ 2.32, 4 d.f., P ¼ 0.68).
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This simple approximation has good accuracy, as shown by the simulations in

Supplementary Figure 1. In the absence of epistasis (additive log-fitness

effects), the alternative prediction is given by ak ¼ a1 and bk ¼ kb1
(Supplementary Methods).

All our predictions stem from three necessary and sufficient assumptions

(Fig. 1): (i) a Gaussian fitness function W(z), (ii) additivity of the effects of

mutations on phenotype (z) and (iii) Gaussian distribution of these mutation

effects with no bias (zero mean). The first two assumptions lead to equation

(2), whereas the remaining predictions also require the third assumption to be

valid but are fairly robust to the ‘additivity’ assumption, as shown in

Supplementary Figure 2. The third assumption is overly restrictive: as the

definition of traits is arbitrary, a transformation of ‘real’ phenotypic traits must

exist such that mutational effects on these ‘transformed’ traits can be approxi-

mated by a Gaussian6.

Data. To test our predictions, we chose the largest available epistasis data sets.

However, we discarded studies based on standing genetic variation instead of

newly arisen mutations, including a very large study measuring the whole

distribution of epistasis in human immunodeficiency virus 1 (ref. 11). Indeed,

the model is meant to describe newly arisen mutations, and its assumptions

(such as symmetrical phenotypic distributions) may be invalidated by past

selection altering the distribution of phenotypes. Several studies have measured

(more or less directly) the mean of eij among random mutations in model

species such as Drosophila melanogaster26, yeast12 or RNA viruses10; many

found either a small or no departure from our expectation that E(eij) ¼ 0

(refs. 3,10). However, fewer studies have directly measured its distribution by

estimating individual epistasis coefficients among individual pairs of random

mutations (not only those conferring visible phenotypes) of known effect and

in the homozygous or haploid state (to avoid the confounding effect of

dominance), which is required to fully test the predictions. To our

knowledge, the data sets presented below are the only ones doing so and

including enough replicates to ensure adequate power of the statistical analyses

(Supplementary Fig. 3).

E. coli data set 1. This data set7 (Fig. 3 of ref. 7) consists of fitness estimates

in E. coli genotypes bearing one or two transposons (‘mini-Tn10’) insertions.

Log relative fitness was estimated for the 27 possible pairs constructed from

nine distinct bacterial genotypes bearing a single mini-Tn10 insert with known

fitness effect, yielding a complete set of log(wi) and log(wij) estimates. In this

data set, the variance of single fitness effects vs* is directly available, as the initial

genotype was well adapted to the test environment. This initial genotype has

indeed evolved for 10,000 generations in this environment27, and, correspond-

ingly, not a single beneficial mutation has been detected among 225 insertions

tested in that same environment28. Therefore, vs* was directly measured from

Var(log(wi)) among the whole set of single mutants used to produce the

double mutants.

E. coli data set 2. This data set7 (Fig. 2 of ref. 7) corresponds to fitness

estimates (replicated three times) for genotypes bearing k ¼ 1, 2 or 3 random

mini-Tn10 inserts, with 75 distinct mutant genotypes per k value, and a

corresponding fitness estimate of the non-mutated genotype (replicated

195 times). It is the largest data set available for the effect of random mutations,

in combination or isolated, that we found in the literature. For the same reason

outlined for the VSV data set, we discarded the nonviable genotypes from our

analysis (one for k ¼ 2 and three for k ¼ 3).

VSV data set. In this data set, single and double mutants were created on an

infectious cDNA by site-directed mutagenesis and were recovered after trans-

fection of susceptible cells with the mutant plasmids8. As discussed29, this

recombinant virus was not well adapted to the environment in which

measurements were madeQ10 , resulting in a proportion (445%) of mutations

with beneficial effects (of up to log(wi) ¼ 0.095), so that so 4 0. so was

measured by maximum-likelihood fitting of a displaced gamma distribution6

on the distribution of log(wi) of the mutations used to construct the double

mutants. The resulting estimate of so ¼ 0.11 (s.e.m. ¼ 0.01) was used to infer

vs*¼ Var(log(wi)) / (1 + 2so / �s) where �s ¼ E(log(wi)) is the mean fitness effect6

(discussed above). The estimated shape b ¼ 1.94 (s.e.m. ¼ 0.47) and the scale

a ¼ 0.095 (s.e.m. ¼ 0.02) of this distribution were used to infer ne ¼ 2.5 and

le ¼ 0.06 (using equations. 6.a and 6.b of ref. 6), which were needed (along

with so) to numerically predict the distribution of eij among beneficial

mutations for this data set. Among the 62 double mutants studied, 3 were

nonviable (synthetic lethal mutations; wij¼ 0) and were removed from the data

set, as the model cannot account for lethal mutations. Also, the previously

published results8 are presented separately for pairs of beneficial and deleterious

mutations (15 and 44 pairs, respectively, synthetic lethal mutations excluded),

whereas the whole set of random mutations (a total of 44 + 15 ¼ 59 pairs)

must be used to test the first prediction presented above (Fig. 2 and Table 1).

Different methods were used in each species to produce mutations (trans-

posons for E. coli versus point mutations for VSV), but reviews of the empirical

literature suggest that this should not result in strong differences for mutation

effects on phenotype30 or fitness traits6. The model we have present here

depends directly on phenotypic effects of mutations, not on their genetic

nature, which may explain why it seems to accurately account for both the VSV

and E. coli data sets.

Statistical analyses. To test the third prediction on VSV data set 2, three

negative gamma distributions were simultaneously adjusted to the relative

fitness values of single, double and triple mutants, with the variance in fitness

estimated per line (from three independent replicate measures) taken into

account. We assumed measurement error to be normally distributed, so that

the fitness of each mutant j was drawn from N(mj, sj). We also assumed that mj
values were drawn from a negative gamma distribution G(bk, ak), where k ¼ 1,

2 or 3 refers to single, double or triple mutants, respectively. For raw data, there

is a strong dependence between measurement error and the magnitude of

fitness effects (the three repeated fitness measures of strongly deleterious

mutants tend to show much larger variance). To account for this strong

heteroscedasticity, we assumed a linear dependence of s on mj. More specifi-

cally, si was modeled as s + amj, where a and s are estimated from the data.

Then, the likelihood of the data given the parameters (a1, a2, a3, b1, b2, b3, s, a)
was maximized according to the likelihood function in equation (A.6) of

Supplementary Methods. Alternative models were constructed by constraining

aj and bj values (Table 2, models 1–5). Models were compared based on their

AIC score20 and/or by likelihood ratio tests. This analysis confirmed the

existence of a strong dependency of measurement error on the magnitude of

fitness effects (for example, in model 1, a ¼ 0.21, support limits {0.19, 0.25}).

Note: Supplementary information is available on the Nature Genetics website.
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5. Segré, D., DeLuna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast

metabolism. Nat. Genet. 37, 77–83 (2005).
6. Martin, G. & Lenormand, T. A multivariate extension of Fisher’s geometrical model and

the distribution of mutation fitness effects across species. Evolution 60, 893–907
(2006).

7. Elena, S.F. & Lenski, R.E. Test of synergistic interactions among deleterious mutations
in bacteria. Nature 390, 395–398 (1997).
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